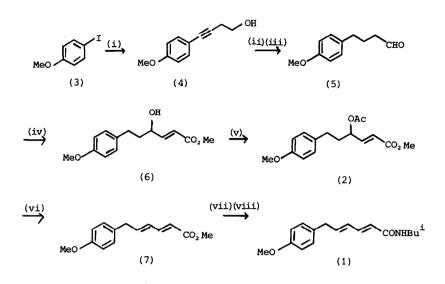

A NOVEL APPLICATION OF MOLYBDENUM MEDIATED DIENE SYNTHESIS IN THE PREPARATION OF PIPEROVATINE

Robert J. Blade* and J. Edward Robinson Department of Pesticide Research, Wellcome Research Laboratories, Ravens Lane, Berkhamsted, Herts, HP4 2DY, England.

<u>Summary</u> : A novel regio- and stereoselective synthesis of the dienamide piperovatine is described. This method does not suffer from problems associated with double-bond migration.

Piperovatine (1) is a naturally occurring lipid isobutylamide obtained from Ottonia vahlii and frutescens and Piper callosum which exhibits mild insecticidal and local anaesthetic activity¹.



The synthesis of compound (1) using approaches based upon Wittig methodology has been reported^{1a,2}. Such methods lack selectivity in that the labile nature of the benzylic hydrogens leads easily to base catalysed rearrangement to give a 3,5-diene unit during the course of synthesis.

We are able to report a new selective synthesis of piperovatine which circumvents these problems.

The base lability of the benzylic site dictates that the dienoate unit be introduced at a later stage in the synthesis and subsequent steps use compatible conditions. The diene unit was therefore synthesised by molybdenum catalysed elimination³ of the allylic acetate (2) (Scheme 1).

Compound (2) was prepared by a sequence commencing with 4-methoxyiodobenzene (3). Palladium (0) catalysed coupling of (3) with but-3-yn-1-ol in the presence of cuprous iodide yielded (4). Catalytic hydrogenation of (4) and subsequent Swern oxidation⁴ gave the aldehyde (5) [69% from (3)]. The product of Knoevenagel type condensation of (5) and methyl 2-(4'-chlorophenyl sulphinyl) acetate was subjected to (2,3) sigmatropic rearrangement⁵ to give the allylic alcohol (6) which was converted to (2) [60% from (5)].

<u>Scheme 1</u>. (i) $But-3-yn-1-ol, (Ph_3P)_2PdCl_2-CuI, NEt_3$ (ii) $Pd/C, H_2, EtOAc$ (iii) (COCl)₂, DMSO, NEt₃, CH₂Cl₂ (iv) 4-Cl.C₆H₄SOCH₂CO₂Me, MeCN, piperidine (v) Ac₂O, pyr., DMAP (vi) Mo(CO)₆, BSA, PhMe (vii) HCl, H₂O, dioxan (viii) (PhNH) (PhO) PO.Cl, NH₂Bu¹, NEt₃, CH₂Cl₂.

Compound (2) was subjected to molybdenum hexacarbonyl catalysed elimination in the presence of <u>bis</u>-trimethylsilylacetamide to give the (<u>E,E</u>) dienoate (7) [73%]. The elimination showed high <u>trans</u> stereo-selectivity and no evidence of double bond migration was apparent in the product. Compound (7) was converted to the acid under mild acidic conditions, subsequent reaction with phenyl N-phenylphosphoramidochloridate⁶ and isobutyl-amine gave piperovatine (1) [43% after chromatography and recrystallisation].

The synthetic material had identical properties⁷ to those reported for the natural material^{1a}.

<u>Acknowledgement</u>. We thank our colleagues within Wellcome Pesticides Research and Development and Professor L.Crombie (University of Nottingham) for very helpful discussion.

References and notes

- 1. (a) S.J.Price, A.R.Pinder, J.Org. Chem., <u>35</u>, 2568 (1970). (b) B.G.Pring, J.Chem.Soc.Perkin 1, <u>1982</u>, 1493 (c) H.Makapugay, D.Soejarto, D.Kinghorn, E.Bordas, J.Ethnopharmacol., <u>1983</u>, 235.
- 2. O.P.Vig, J.P.Salota, V.Ahuja, J.Ind.Chem.Soc., 1974, 817.
- 3. B.M.Trost, M.Lautens, B.Peterson, Tet.Letts., 1983, 4525.
- 4. A.J.Manusco, S.L.Hyang, D.Swern, J.Org. Chem., 43, 2480 (1978).
- 5. R.Tanikaga, Y.Nozaki, T.Tamura, A.Kaji, Synthesis, 1983, 134.
- 6. R.Mestres, C.Palomo, Synthesis, 1982, 288.
- 7. Melting point 118°-119.5°(Lit.^{1a} 120°); UV; λ max 262 nm (EtOH); IR; ν 3320,1661,1632,1620 cm⁻¹ (nujol); 'HNMR (200 MHz); δ 7.15 (m,1H),6.97 (AB quartet,4H), 6.25 (m,2H),5.76 (d,J 16 Hz, 1H), 5.43 (bd, 1H), 3.79 (S,3H), 3.44 (d, 2H), 3.25 (d of d, 2H), 1.78 (m, 1H), 0.93 (d,6H) (CDCl₃)

(Received in UK 25 April 1986)